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Week 6: Matrix Multiplication and Linear Transformation

Course Notes: 4.1,4.2

Goals: Learn the mechanics of matrix multiplication and linear
transformation, and use matrix multiplication to describe linear
transformations.



Matrix Anatomy

A =

1 2 3 4
2 4 6 8
3 6 9 12



A matrix with 3 rows and 4 columns is a 3 by 4 matrix.

We often write A = [ai ,j ], where ai ,j refers to the
particular entry of A in row i , column j .

Here, a3,2 = 6
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Addition and Scalar Multiplication

Addition and scalar multiplication work the way you want them to.

A =

1 2 3 4
2 4 6 8
3 6 9 12

 , B =

2 1 5 −1
8 6 6 2
3 −1 2 −3



A + B =

1 + 2 2 + 1 3 + 5 4− 1
2 + 8 4 + 6 6 + 6 8 + 2
3 + 3 6− 1 9 + 2 12− 3

 =

 3 3 8 3
10 10 12 10
6 5 11 9



10A =

10 20 30 40
20 40 60 80
30 60 90 120
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Matrix Multiplication

[
1 2 3
2 4 6

]
·

1 0
2 1
0 3

 =

[
5 11

10 22

]

In the product, the entry in the ith row and jth column comes from
dotting the ith row and jth column of the matrices being multiplied.

[1, 2, 3] · [1, 2, 0] = 5

[1, 2, 3] · [0, 1, 3] = 11
[2, 4, 6] · [1, 2, 0] = 10
[2, 4, 6] · [0, 1, 3] = 22
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Another Example

0 1 3
1 0 2
1 1 1

2 3
3 0
1 2

 =

6 6
4 7
6 5
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Wait but... why

[
1x1 + 2x2 + 3x3 + 4x4
5x1 + 6x2 + 7x3 + 8x4

]
=

[
0
2

]

[
1 2 3 4 0
5 6 7 8 2

]

A =

[
1 2 3 4
5 6 7 8

]
, x =


x1
x2
x3
x4

 , b =

[
0
2

]

Ax = b
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Dimensions

[
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

]
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

 =

[
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

]

If A is an m-by-n matrix, and B is an r -by-c matrix, then
AB is only defined if n = r . If n = r , then AB is an
m-by-c matrix.

Can you always multiply a matrix by itself?
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Properties of Matrix Multiplication

One important property DOESN’T hold.[
1 2
0 0

] [
7 5
3 0

]
=

[
13 5
0 0

]

[
7 5
3 0

] [
1 2
0 0

]
=

[
7 14
3 6

]
Matrix multiplication is not commutative. Order matters.

Suppose the matrix product AB exists. Does the product BA also have to
exist?
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Properties of Matrix Algebra

The other properties hold as you would like. (Page 128, notes.)

1. A + B = B + A

2. A + (B + C ) = (A + B) + C

3. s(A + B) = sA + sB

4. (s + t)A = sA + tA

5. (st)A = s(tA)

6. 1A = A

7. A + 0 = A (where 0 is the matrix of all zeros)

8. A− A = A + (−1)A = 0

9. A(B + C ) = AB + AC

10. (A + B)C = AC + BC

11. A(BC ) = (AB)C

12. s(AB) = (sA)B = A(sB)



Examples

Simplify the following expressions.

1)

1 2 3
4 5 6
1 2 3

8 9 8
9 8 9
8 9 8

+

1 2 3
4 5 6
1 2 3

−8 −9 −8
−9 −8 −9
−8 −9 −8



2)

([
33 44
55 66

] [
5 1
7 0

])[
0 0
1 1

]

3) 2.8

15 0 38
9 10 11
8 7 6

+ 5.6

−2.5 0 1
0.5 0 −0.5
1 1.5 2





More on Dimensions

Suppose A is an m-by-n matrix, and B is an r -by-c matrix.

If we want to multiply A and B ,
what has to be true about m, n, r , and c?

If we want to add A and B ,
what has to be true about m, n, r , and c?

If we want to compute (A + B)A,
what has to be true about m, n, r , and c?



Functions and Transformations

f

domain range

f (v) = ‖v‖

vectors R

f (v) = 3v

vectors vectors

f (u, v) = u × v

pairs of vectors in R3 R3
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Linear Transformations

f (x) = x2

f (2 + 3) = 25
f (2) + f (3) = 4 + 9 = 13
f (2 ∗ 3) = 36
2f (3) = 2 · 9 = 18

g(x) = 5x

g(2 + 3) = 25
g(2) + g(3) = 10 + 15 = 25
g(2 ∗ 3) = 30
2g(3) = 2 · 15 = 30
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Linear Transformations

Definition

A transformation T is called linear if, for any x, y in the domain of T , and
any scalar s,

T (x + y) = T (x) + T (y)

and
T (sx) = sT (x).

If A is a matrix, then the transformation

T (x) = Ax

of a vector x is linear.

Is every line (y = mx + b) a linear transformation?
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Example

Let T (x) be the rotation of x by ninety degrees.

x

T (x)

2x

2T (x)

y

T (y)

x + y

T (x) + T (y)

Rotation by a fixed angle is a linear transformation.
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Computing Rotations

v

θ

‖v‖ cos θ

‖v‖ sin θ

T (v)

φ

‖v‖ cos(θ + φ)

‖v‖ sin(θ + φ)

cos(θ+φ) = cos θcosφ− sin θsinφ sin(θ+φ) = sin θcosφ+cos θsinφ
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Computing Rotations

v = [v1, v2]; T (v) = [x , y ]

x = ‖v‖ cos(θ + φ) y = ‖v‖ sin(θ + φ)

= ‖v‖(cos θ cosφ− sinφ sin θ) = ‖v‖(sin θ cosφ+ cos θ sinφ)

= v1 cosφ− v2 sinφ = v1 sinφ+ v2 cosφ

[
x
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=
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sinφ cosφ

] [
v1
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]
The matrix is called a rotation matrix, Rotφ



Computing Rotations

Rotφ =

[
cosφ − sinφ
sinφ cosφ

]

What matrix should you multiply

[
4
2

]
by to rotate it 90 degrees?

Rotπ/2 =

[
0 −1
1 0

]

What matrix should you multiply

[
4
2

]
by to rotate it 30 degrees?

Rotπ/6 =

[√
3
2 −1

2
1
2

√
3
2

]
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Projections

For a fixed vector a , let T (x) = projax

a

x

T (x)

2x

T (2x)

y

x + y

T (x + y)
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Computing Projections

Let a = [a1, a2] and x = [x1, x2].

projax =
1

a21 + a22

[
a21 a1a2
a1a2 a22

] [
x1
x2

]


























